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The industry is composed by systems and machines that need to operate within suitable and defined parameters 
to ensure quality in its production line. Through maintenance management techniques such as Reliability-
Centered Maintenance, it is intended to provide a quantitative feedback tool by means of Simplified Dynamic 
Fuzzy Cognitive Maps applied to electric transformers. This computational tool aims to provide a diagnosis 
with maintenance reliability levels assisting in future decision-making processes in maintenance management.  
This tool is based on failures and/or defects occurrence and team quality. This work aims at an initial development 
of a computational tool proposed by the authors.
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1	INTRODUCTION
Transformers are essential components in 

energy distribution and industries (FINOCCHIO et al., 
2016). The electrical transformers are divided into 
two classes characterized by its insulation type: the 
oil-type transformers, aim of this work, and the dry-
type transformers. Those transformers have several 
applications as in energy generation, transmission, 
and distribution, in concessionaires, large industries  
and substations.

The importance of power transformers, in 
electrical systems, is directly linked to the electric 
power supply continuity. According Milanesi (2007), 
conceptually, the transformers are static electric 
machines. When the fault or defect occurs, the 
electric power supply is interrupted. Therefore, the 
electric power concessionaires are in the process of 
optimizing the maintenance and state’s diagnostics 
of their substation equipment, especially power 
transformers, due their high cost of purchasing, 
repairing and replacing – which can reach millions of 
dollars (KULKARNI; KHAPARDE, 2012).

Making decisions is a common action people have 
to do every day throughout their lives. Even though it 
might seem as something trivial, the decision taken is 
a result of experiences, knowledge and one’s ability to 
assess the situation. Depending on the problem, if a 
decision is taken by some expert in the subject, it has a 
higher chance to be the optimal, or at least successful, 
solution. To assist in the decision-making process, 
creating a graphic illustration to represent the problem 
is one of the possible ways to analyze it and reach a 
conclusion (ELENI; PETROS, 2017).

In this context, the need for maintenance 
management of these equipment becomes essential. 
Conceptually, maintenance is the activity that seeks to 
preserve the technical characteristics of an equipment 
at the level of its specified performance. 

The maintenance of equipment and machinery 
must include technical knowledge and administrative 
procedures in order to maintain its functionality, safety, 
and environmental characteristics. Otherwise, the 
maintenance must allow the equipment to operate 
in order to ensure the continuous production of 
the company and/or industry, besides preventing 
failures that may partially or fully harm the production  
line involved.

The application of maintenance strategies 
focuses directly on the particularities of the aging 
stage of equipment and installations. According to the 
concept of maintenance and conservation of machines 
and equipment. One of the known maintenance 
management strategies is the Reliability-Centered 
Maintenance (RCM) (SMITH, 1993; SAE, 2002), which 
is oriented to failures and defects of machines or 
systems. In short, RCM in its classic form is the 
application of a structured method to establish the best 
maintenance strategy for a given system or equipment  
(MOUBRAY, 2000).

Thus, the concepts of failure and structured 
analysis will be used in the development of this research. 
However, the proposed tool is in an initial stage, it 
can be extended and applied to transformers with 
different power specifications, from distribution ones 
to those applied in industries, such as from 45 KVA to  
3 MVA.
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The objective of this work is to build a structured 
model of a maintenance management system with 
two secondary objectives. Initially simulate and predict 
maintenance quality levels according to maintenance 
quality level, number of faults and defects recorded and 
team qualification. After the initial stage suggest actions 
necessary to improve the level of maintenance quality.

The structure of this paper is as it follows. Section 2  
conceptualizes aspects of maintenance and industrial 
maintenance. Section 3 gives the main aspects of 
FCM and sDFCM, and presents the approach towards 
maintenance management inspired on RCM applied in 
electric transformers. Section 4 presents the simulated 
results, and Section 5 concludes the paper and suggests 
future works.

2	Maintenance Management Concepts
In industrial plants, the stoppage for maintenance, 

in general, generates concern about the scheduling 
and production progress. The organization must be 
structured with the purpose of fulfilling the binding 
requirements, relating technics in the manufacturing 
process, the personnel involved with the product 
and maintenance of the machines used in the 
manufacturing process, and the type of product to  
be manufactured.

The management of maintenance systems is 
a complex activity, especially when there are several 
contracting companies acting as executors of planned and 
emergency activities (HENRIQUES, 2016). In particular, the 
maintenance of electrical transformers, due to the need 
of uninterrupted supply and energy’s quality.

The adaptation of all administrative practices 
with technical and supervisory actions, which happens 
through direct or indirect equipment processes, shall 
be aimed at ensuring the safety and efficiency of the 
functions and standards required in the manufacture or 
service supply in which the equipment was designed for.

Managing equipment, as in the case of transformers, 
requires a maintenance routine that must involve several 
actions that configure the best functioning and allow 
reliability in the process in which it is inserted, such as 
the transformation and distribution of energy. In this 
context, the development of a strategy that indicates 
reliability levels can be used to help in the management 
of the maintenance, identifying possible points of 
improvements in the quality, e.g. the technical knowledge 
of the manpower.

It’s not the scope of this work to discourse the 
types of maintenance, only to substantiate the concepts 
required for maintenance management inspired by the 
RCM technique by means of an sDFCM.

The types of classic maintenance considered in the 
development of this work are:

•	 Corrective Maintenance: performed when a failure 
occurs on certain equipment. It can be planned 
when the equipment indicates symptoms that its 
operation is not under normal conditions, or that 
the cost-benefit relation to Preventive Maintenance 
is more interesting and profitable. It’s also identified 
as unplanned, where an unexpected failure occurs, 
a rapid corrective action is required;

•	 Preventive Maintenance: indicated when it is 
necessary to replace parts or recover the equipment. 
This type of maintenance analyzes the best moment 
for the maintenance to happen in critical equipment, 
preventing the manifestation of failures;

•	 Predictive Maintenance: it requires constant 
equipment monitoring through more sophisticated 
instruments, which allows an equipment’s 
maintenance before a break happens and it stops 
working. Some of the main methods used to monitor 
equipment include vibration analysis, thermography 
analysis, oil analysis, noise analysis, among others.

Aiming the construction of a tool to assists in 
decision-making regarding failures and defects, especially 
of failures. Thereby, it is important to define:

•	 Defect: an anomaly in equipment that can cause it 
to operate irregularly or below its rated capacity. If 
not corrected in time, it can evolve and cause the 
equipment to fail and be removed from service. 
Examples: overheating, excessive vibration, incipient 
electric shocks (in the initial stage), among others;

•	 Fault: an anomaly in equipment that necessarily 
requires the interruption of the equipment in 
operation, i.e. withdrawing it from service.

Failures and defects can be expanded in more 
complexity levels, but this work’s purpose is to develop 
a tool for diagnosis by the frequency of their occurrence 
and not intrinsic analysis of the causes. Thus, reliability can 
be defined as the ability of an item to perform a specified 
required function over a given time interval. Failures can be 
classified by their origin, speed and manifestation (FRAZÉN; 
KARLSSON, 2007).

There are several maintenance management 
strategies in the literature (HOYLAND; RAUSAND, 2004). 
The RCM is a technique that is used to develop cost-
efficiency maintenance plans and criteria so the equipment 
operational capability is achieved, restored, or maintained. 
The main objective of RCM is to reduce the maintenance 
cost by focusing on the most important functions of the 
system. There are several different formulations of RCM 
processes in the literature. The RCM analysis may be 
carried out as a sequence of activities or steps.

The use of a checklist is usually used, in maintenance 
management, for standardization and recording of 
sequence of the actions to be performed. The execution 
frequency establishment of the checklist procedures is 
of paramount importance, since some inspected items 
require annual, monthly, weekly or even daily monitoring, 
and should be defined by the area experts (FUKUZAWA 
et al., 2005). The priority regarding the activity to be 
developed in maintenance should also be determined. 
Which are stipulated according to the importance and 
nature of the machine. However, it is necessary to define 
its frequency of execution, using suitable models. A 
priori, suggestions of the main actions are presented, in 
a summarized way, adopted by the authors or specialists. 
Table 1 presents some observed concepts to this 
work’s development, e.g., the transformer temperature 
measurement, an important factor when the former is 
operating on overload conditions.
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In this context, the development of a cognitive 
model that represents the management inspired by the 
concepts of Reliability Centered Maintenance prioritizes 
the representation of the concepts of potential failure/
defect and functional failure/defect. However, it is 
stressed that the insulation degradation is a major 
concern for these aged transformers around world 
(SAHA, 2003).

3	Simplified Dynamic Fuzzy Cognitive 
	 Maps Applied to Maintenance 
	 Quality Level

The need for monitoring in industrial electrical 
installations can be found in Paoletti and Herman (2015). 
In this context, this research suggests the use of a sDFCM, 
a variation of the classic FCM, to assign maintenance 
quality levels, the initial version of sDFCM1 implemented 
in this paper and its complete version (sDFCM1 and 
sDFCM2, in a future work), to assist decision making in 
the maintenance management area. 

Since the pioneering work of Kosko (1986), which 
extended Cognitive Maps (AXELROD, 1976) by the 
inclusion of Fuzzy Logic, several applications of FCM have 
emerged in the literature in several knowledge areas.

Fuzzy Cognitive Maps (FCM) is composed 
by Axelrod’s Cognitive Maps paper which causal 
relationships have fuzzy values attached to. They are 
system models in a graph-form, where the nodes are 
the concepts related to the problem, and the lines 
are the causal relationships. It is usually used to study 
system dynamics because of its mathematically simplicity.  
The relationship’s influence is calculated using normalized 
state and matrix multiplications.

The inference may reach a steady state, a limit 
cycle or even a chaotic state. (KOSKO, 1986; TABER, 
1994). The activation level of a concept is based on its 
previous iteration and the propagated weighted values 
of all other concepts.

There are many examples of FCMs that use 
monotonic and symmetric weight cause-effect 
relationships between the concepts in the literature. 
It might work on controlled environments but when it 
comes to the real world it can’t be applied because of the 
dynamics aspects. A few techniques can be used to fix 
it, such as using Fuzzy rules and feedback mechanisms 
(CARVALHO; TOME, 2000) or algebraic equations to 
define the causal relationships when the real system 
have been modeled by crisp relations (AGUILAR, 2004).

Some applications of the FCM and its variations 
can be found in the literature in the areas of artificial 
life (DICKERSON; KOSKO, 1996; ARRUDA et al., 2016), 
spot detection in images generated by stereo camera 
systems (PAJARES; DE LA CRUZ, 2006), mobile robotics 
(Pipe, 2000), decision making in the medical field 
(Papageorgiou et al., 2012), time series prediction 
(HOMENDA; JASTRZEBSKA; PEDRYCZ, 2014), multi agent 
systems (RODIN et al., 2009; ACAMPORA; LOIA, 2011), 
process control (MENDONÇA et al., 2013), maintenance 
management (JAMSHIDI, 2015) among others. 

Recently, some studies are using learning 
algorithms to adjust interaction weights among the 
factors to overcome the drawback in FCM (CHEN; CHIU, 
2016). In this way, evolutions of the FCM has appeared, 
such as ED-FCM (Event-Driven - Fuzzy Cognitive Maps) 
applied in autonomous mobile robotics (MENDONÇA; 
ARRUDA; NEVES, 2011), and DCN (Dynamic Cognitive 
Networks) on process control (MIAO et al., 1999; 
MENDONÇA; ARRUDA, 2015). In Acampora and Loia 
(2011) is presented a formal adaptation of the original 
FCM, this new tool is designated as TAFCM (Timed-
Automata Fuzzy Cognitive Maps). These are just a few 
of several examples that can be found in the literature. 

Thus, Gonzalo and collaborators (NÁPOLES, et 
al., 2016) recently suggested that the Fuzzy Cognitive 
Maps (FCMs) are powerful tools for modeling dynamic 
systems. FCMs describe expert knowledge of complex 

Table 1 - Check List – Maintenance in oil type transformers

Item Maintenance actions description
01 Inspection of the general state of conservation: cleaning, painting and metal parts corrosion.
02 Verification for leaks of insulating oil.
03 Verification of the conservation state of sealings.
04 Verification of insulating oil level in the main tank.
05 Verification of grounding in the main tank.
06 Check the operation of the gas relay, flow relay and the pressure release valve of the main tank.
07 Verification of the saturation state of the drying material used in the preservation of the insulating oil.
08 Verification of conservation status of conservative bags and membranes.
09 Verification of oil level and temperature indicators.
10 Checking the operation of the oil circulation system.
11 Verification of the cooling system.
12 Checking the oil level in the commutator compartment.
13 Inspection of wiring and interconnecting boxes.
14 Measurement of vibration and noise of fans and pumps of the cooling system.
15 Verification of the manual and automatic (if present) commutation system.
16 Inspection of the commutator motorized drive box.
17 Power factor and capacitance tests of the capacitive shunt bushings.
18 Reliability level found by the sDFCM.
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systems with high dimensions and a variety of factors.  
An increased interest about the theory and application of 
FCMs in complex systems has been also noted, in short, 
FCMs are powerful tools for modeling dynamic systems. 
On the other hand, although FCM are considered 
as neural systems, there are important differences 
regarding other types of artificial neural networks (ANN). 

Classical ANN models regularly perform like black 
boxes, where both neurons and connections do not 
have any clear specific meaning for the problem itself. 
However, all the neurons of the FCM have a precise 
meaning for the physical system and correspond to 
specific variables (NÁPOLES et al., 2016). In this way, 
according Rodin et al. (2009), the fundamental difference 
between FCM and ANN is that all nodes of the FCM have 
a strong semantic. 

In general, the FCMs can be developed in two 
different ways, in an automatic way, through historical 
data, or manually (YESIL et al., 2013). The FCM used in this 
research was developed manually, because the causal 
relationships weights were adjusted empirically, so that 
the desired output is a quantitative diagnosis through 
the qualitative opinion of the experts. 

In specific case, used in this article, FCMs allow 
a quantitative analysis of the dynamic behavior in the 
FCM models to aid decision making. Thus, planners can 
reach the same response on viable combinations of 
input values for independent FCM variables and calculate 
dependent variables to assess the input variation’s 
impact and alternative system description, like different 
solutions of a complex problem. In that way, this can 
be linked to a future state that is internally consistent 
due to it is the result of a calculation, which considers all 
direct and indirect relationships between the concepts 
(JETTER; KOK, 2014). In Section 4 will be presented some 
predictions of maintenance quality level. In addition, it 
is possible to make other predictions and analysis of 
different scenarios in order to plan management actions.

Further construction details of the classical FCM 
with different mathematical formalisms, inferences types 
and applications can be found in Glykas (2010). Recently, 
Papageorgiou (2014) presents different evolutions of the 
classic FCM model and its new applications. In this work, 
especially in chapter 10, an algorithm based on FCM 
Ontology (LEE; LEE, 2015) is presented as development 
steps of an FCM model, as shown in Table 2.

The DFCM development has 7 steps, the sDFCM 
has summarized it down to 6 steps, excluding the step 
that addresses information processing and dynamic 
tuning of the causal relationships. Thus, the basic 
difference between the proposed version and the former 
one, in this research, is the application of sDFCM dynamic 
tuning machine learning algorithms not necessary.  
More information on the development of DFCM can be 
found in Arruda et al. (2016), in which it also discusses 
aspects of DFCM stability, relevant to the development 
of the cognitive model, as the one used in this research.

Steps 1, 2 and 3 of this algorithm are like classic 
FCM development. Step 4 is related to the inclusion in 
the graph of fuzzy relations that model cause-effect 
relationships. The use of a fuzzy relation allows modeling 
a relationship with more than a concept as antecedent 
and/or consequents and therefore a non-monotonic 
inference engine is represented. This step is quite 
common in recent models using FCM (PAPAGEORGIOU, 
2012). In step 5 the rule base associated with the strategic 
decision level are included. Finally, step 6 corresponds 
to the model validation.

The FCM inference is made through concepts and 
their respective causal relationships. They are updated 
through iteration with the other concepts and with their 
own value. This is given by the matrix with the causal 
relations weights, and are represented by the weight 
sum, equation (1). The values of the concepts evolve after 
the iterations, as shown by the function of equation (1) 
in (2) until they stabilize at a fixed point or in a limit cycle.

Table 2 - FCM Ontology

Steps Description

01 Identification of elementary concepts, their roles (input, output, decision and level) and their interconnections, 
determining its causal nature (positive, negative, neutral).

02 Initial set-up of concepts and relationships. The initial state values of the map (nodes/edges) can be acquired from 
experts, historical data analysis and/or system simulation.

03 Determination of ontological influence among concepts. Design of the different ontological views of the system.

04 To each view of the system, design of fuzzy rule bases and time varying functions computing the values for the 
weights of the DFCM fuzzy and/or time-varying relations.

05 Design of management level corresponding to the development of the rule base that are associated to and selection 
relations, and, implementation of algorithm to online learning such as reinforcement learning rules.

06 Model Validation.

(1)

Where n is the number of nodes in the graph, Wji is 
the arc weight that connects the concept Cj to Ci, Ai is the 
Ci concept value in the present iteration. Similarly, Ai

previous 
is its Ci concept value in the previous iteration, and the f 
function (2) is a sigmoidal type function:

(2)
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The FCM, in some cases, 
may not stabilize and oscillate, 
or even exhibit chaotic behavior 
(STYLIOS; GROUMPOS, 1998).

Generally, for well-behaved 
systems, it is observed that after 
a finite number of iterations, 
generally a low value, the FCM 
stabilizes, as shown in Fig. 3, for the 
FCM in this work, stabilizing after 
3 or 4 iterations. The concepts 
values reach a fixed equilibrium 
point or a limit cycle, presenting 
a small variation around a fixed 
value. In Nápoles et al. (2016) it 
is analyzed the convergence of 
the FCM.

Fig. 1 shows an overview of 
the decision-making sequence, 
in which sDFCM is part of 
a maintenance strategy. It is 
observed that the FCM inference 
directly influences the decision 
making, due to the reliability 
level found by the FCM. Also, 
according to Fig. 1, the checklist 
item processing determines 
the actions to be performed 
according to the maintenance information inputs.

It can be cited some papers that uses soft-
computing techniques in transformer or maintenance 
management, ANN in Finocchio et al. (2016), Fuzzy logic in 
Henriques (2016), and in Jamshidi (2015) it is used an FCM 
to assess the risks of maintenance outsourcing.

The complete sDFCM (Fig. 2) is divided in two 
parts to contemplate the whole cognitive model strategy 
presented in Fig. 1. The sDFCM1 (red dashed line) uses 
as input concepts the level of occurrence and quality of 
preventive and predictive maintenance. 

The established criteria are, when these levels are 
above 50% they have a positive influence in the reduction of 
the faults and defects, and consequently in the maintenance 
quality level. The maintenance quality level has a weak 
negative influence on the training and qualification of the 
team. Which suggests that when the maintenance level 
result is under the 50% criteria, it is needed a higher team 
qualification, and vice versa. 

The selection functions (represented by the red 
squares) are used for the inversion of the causality 
between the input concepts and the faults and defects 

occurrence concepts associated 
with a rule or condition, in this 
case the threshold value of 
50%. The discourse universe 
will be established by the  
maintenance policy.

The sDFCM2 (blue dashed 
line) completes the proposed 
strategy with maintenance 
suggestions according to the 
input intensities of related 
concepts and the maintenance 
quality level from sDFCM1.  
The connections type is fuzzy 
values obtained through the 
inference by a set of fuzzy rules. 
As example, if the maintenance 
quality level is high and the defects 
levels are low, the sDFCM2 may 
suggest preventive maintenance. 
In short, sDFCM changes its 
structure according to input  
concepts variations.

Figure 1 - Maintenance management cognitive model

Figure 2 – Complete sDFCM
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As result, after the cognitive model development, 
the W matrix in the original definition reported in Kosko 
(1986), is now a time varying matrix which values are 
computed according to the importance (level) of the 
modeled characteristic and the relationship types. Each 
weight in this matrix can be also modeled as a tuple:

		  (Ci, Co, r, U, Br)

Where:
•	 N identifies the layer or level where the 

relationships belongs, i.e., a pure causal 
relationship have N = 0, since it belongs the 
lowest layer level.

•	 Ci represents the input concepts composing the 
inference premise.

•	 Co represents the output concepts of the 
relationship.

•	 r is the type of relationship, which can be a causal 
relation, a time varying causal relation, a fuzzy 
relation or a selection relation.

•	 U describes the universe of discourse of the 
relationship, which can be a numeric value, an 
interval or a linguistic variable.

•	 Br is the index representing the rule base relevant 
to the relationship, thus pure causal or time 
varying causal relation has Br = 0.

4 INITIAL sDFCM RESULTS
In this section will be presented and discussed 

the initial sDFCM1 results. It is noteworthy that the 
results reached a limit cycle, due small variations in 
the output, as can be seen in Fig. 3, 4 and 5.

The sDFCM was simulated in three scenarios, 
one with favorable conditions, the second with 
average conditions, and the other one with 
unfavorable conditions. Fig. 3 shows the initial results 
for the favorable conditions, when it is provided to the 
sDFCM1 considerably high levels of corrective and 
predictive maintenance, in which the system infer 
maintenance quality level over 86%. It suggests that 
team training needs gets lower, and consequently, 
tends to lower faults and defects occurrences.

On the other hand, when it is provided an unfavorable 
condition to the sDFCM (Fig. 5), the maintenance quality 
level lowers considerably. In which the inputs are close 
to 40%, resulting in, approximately, a maintenance 
quality level of about 57%. 

As can be seen in the Fig. 5, due the low 
maintenance quality level, the sDFCM suggests a 
greater need of team training and higher possibility of 
fault and defects occurrence. 

To verify the results from both best and worst 
conditions, an average conditions set was made, 
as seen on Fig. 4. As expected, this case presented 
numbers between the two other scenarios, with 
a maintenance quality level at about 70% (above 
best case), and lower number of defects than the  
worst scenario. 

It can be noticed that the diagnosis of 
maintenance quality level was sensitive to the different 
cases, decreasing with the increased number of defects 
and failures detected. In this way, some predictions of 

Figure 3 – sDFCM initial results, best scenario

Figure 4 – sDFCM initial results, average scenario

Figure 5 – sDFCM initial results, worst scenario
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the maintenance level of different scenarios can be made. 
For example, one can try to predict the maintenance 
quality level by reducing the number of failures and 
defects.

5 CONCLUSIONS
According to the initial results, the sDFCM 

corresponded to the expectations of the work, assigning 
coherent quantitative values to the maintenance quality 
level in a favorable and unfavorable situation. The possibility 
levels of failures and defects occurrence were also coherent, 
as well the need for training and qualification of the team. 
Thus, to validate this tool, adjustments will be necessary in 
the model; which may occur according to different policies 
of each application.

It is hoped to have contributed to maintenance 
management area and to Fuzzy Cognitive Maps models, 
with a computational tool to provide a quantitative feedback 
for possible decision-making through an initially qualitative 
knowledge-based model of the experts. The initial version 
of the sDFCM1 tool can provide quality level predictions for 
future maintenance management actions.

Future works will address a comparison of the 
computational complexity between sDFCM and DFCM, and 
the implementation of the sDFCM2. Finally, the application 
of the concepts presented in this research in a real case 
study to validate the sDFCM, as well the comparative with 
classic technique in the literature, such as classic Fuzzy
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