
132 Sinergia, São Paulo, v. 20, n. 2, p. 132-137, abr./jun. 2019https://ojs.ifsp.edu.br/index.php/sinergia

NoSQL and Traditional Database Integration:
Case Study Project BDIC-DM

Ramiro Tadeu Wisnieski 1

This article describes the procedures involved in integrating a NoSQL database with a traditional one. These procedures were
implemented in an academic project context of agile development, entitled Big Data, Internet of Things and Mobile Devices
(BDIC-DM in Portuguese). This project was conceived in the first half of 2015 at Aeronautics Institute of Technology (ITA).
As a requirement for the effectiveness of the mission, the implementation of an e-commerce system to manage
transactions involving large volumes of data (Big Data), a number of different technologies were used. Among these
tools the ones that stand out are those involving the generation, storage and consumption of large volumes of data.
As a starting point for some features of Real Time Transactional Processing (OLTP - Online Transactional Processing)
system, the traditional Database Management System (DBMS) MySQL was used along with the DBMS NoSQL Cassandra
to store the portal purchase data. As for the batch data analysis (OLAP - Online Analytical Processing) Apache Hadoop
Ecosystem was used. An infrastructure based on the Apache Sqoop tool allowed the export of data from traditional
relational database to the HDFS(Hadoop File System).

Keywords: Big Data. Cassandra. Iintegration. MySQL. NoSQL.

1 - Computing Division - Federal Institute of Education , Science and Technology São Paulo, IFSP - Itapetininga, Sao Paulo, Brazil. < ramirotadeu@gmail.com.br >.

Data de entrega dos originais à redação em: 12/08/2016
e recebido para diagramação em: 20/04/2018

Ciências Exatas e da Terra - Ciência da Computação - Sistemas de Computação - Arquitetura de Sistemas de Computação (Ciência da Computação)

I.	 Introduction
With the recent rise of Big Data worldwide, it

became necessary to use specialized tools that facilitate
the process of storage, consumption and analysis of huge
amounts of data. The International Data Corporation
(IDC) projects an average growth rate of annual Big Data
usage of 53% in the volume of data between 2011 and
2016. According to Ashish Nadkarni, Research Director
of storage systems at IDC, “Storage is one of the areas
of greatest investment for big data and data analysis
in this period and in the next decades”. [1]Having the
know-how of the technological apparatus allows several
companies to extract insight from Big Data generating
profit, maximizing results and reducing waste as well as
finding opportunities that were not visible before the
implementation of an OLAP system (Online Analytical
Processing) or were not aware of the possibilities of
managing large volumes of data transactions in real time
via OLTP (Online Transaction Processing).

This work aims at showing a small portion of the
numerous possible procedures within the world of Big
Data, making integration between two different databases
possible, respecting the characteristics of volume, speed,
range, veracity and value inherent in Big Data [2].

II. Context
A mission statement was proposed in order to

guide the project development to be as analogous as
possible to the real scenario of purchasing involving
devices and its requirements.

A.	 Traditional Database Concept
“A Database “is a collection of interrelated data,

representing information about a specific domain” [1].
It represents part of the real world in an abstract way.
When a database is handled by a software (Database
Management System - DBMS), it is said that there is
a database system. The standard relational database

system makes use of relationships between different
entities, attributes and records. If together with this
relationship, the DBMS has its segmented data and
associated by types and common fields, we say that
this is a relational database with structured data. The
database project takes place in two phases: Conceptual
Modeling and Logical Design. The first is made ​​ user
account regardless of the DBMS, there is only the
definition of the data that exist in the database. The
second depends on the type of DBMS, whether it is
relational, object-oriented, hierarchical, among others.
The relational DBMSs, in which data is organized in
tables [3], are the most common ones.

The Structured Query Language (SQL),
standardized by ANSI and ISO, is currently the most
used for creation and manipulation of structured data
in relational databases.

SQL is divided into four language subsets: DDL
- Data Definition Language, DML - Data Manipulation
Language, DCL - Data Control Language and TCL -
Transaction Control Language.

B.	 NoSQL Concept
NoSQL database is an alternative to relational

database technology. The use of NoSQL database
mitigates the scalability problem in traditional databases.
Its origin occurred in a context of Big Data, in which large
volumes of data require high processing power. The data
models can be based on columns, documents, graphs,
key-value among others.

C.	 Apache Cassandra
Big Apache Cassandra is a scalable open source

NoSQL database that provides high availability and high
performance. It was developed at Facebook and became
an Apache project in 2010. In Cassandra, objects and data
are manipulated via CQL (Cassandra Query Language),
which is very similar to SQL language.

133sinergia@ifsp.edu.brSinergia, São Paulo, v. 20, n. 2, p. 132-137, abr./jun. 2019

NoSQL and Traditional Database Integration: Case Study Project BDIC-DM
Ramiro Tadeu Wisnieski

III. Development of the solution proposal

A.	 MySQL and Cassandra
Initially the NoSQL Cassandra was the only

database to be used in the BDIC-DM project. However,
after a careful analysis done by the developers, the
conclusion was that the use of a traditional relational
DBMS was needed, since an e-commerce portal would
be part of the project. The main purpose of the portal
was to simulate the sale of some products, taking into
consideration the payment by credit card. All tables
except for the transaction table (figure 2), which was
responsible for the financial transactions on the Project
Data Model (figure 1), were allocated in the relational
database [4] [5].

security cameras, servers, social networks,
among others. In Big Data, the analysis of
these large data volumes allows that a
new “insight” can be extracted. Information
such as human behavioral patterns, climate
change, security alerts or any type of strategic
information that brings added value to the
institution [6].

The increase of datasets in size and
variety in the recent years associated with
a global policy in searching for solutions
with a good cost benefit took companies
like Facebook and Yahoo to seek scalable
solutions that could analyze terabytes or even
petabytes of data.

This work uses Apache Hadoop as the
OLAP analysis solution, thus isolating the
processing of large volumes of transactions
from the OLTP environment that uses
Cassandra, optimized for high performance.
The scalability offered by Hadoop combined
with the ease of implementation of the jobs
needed through the Apache Hive was crucial

for this solution to be chosen [4].

IV.	 Hadoop Ecosystem
A.	 Hadoop

When datasets reach hundreds of gigabytes and
the demand for data analysis of unstructured data such
as logs, social networks and sensor data increases, there
is the need for a horizontal scalable solution that provides
the tools for the Data Scientist to extract information
from these large volumes of data in a parallel manner [2].

Based on the Google MapReduce and Google File
System technology, Apache Hadoop originated at Yahoo
company. It is a framework written in Java, optimized for
analysis of large volumes of structured and unstructured
data using relatively inexpensive hardware. Hadoop is
a powerful tool for sequence analysis, and it is not a
replacement for relational databases, functioning as a
complement that allows the management of different
types of data in large volumes. In the paradigm used by
Hadoop, the processing power is brought to the data,
unlike traditional solutions that rely on large transfers

During phase 2 of the project, the financial
transactions involving the purchases made by customers
through the e-commerce portal, were stored in the NoSQL
Cassandra DBMS. The application, which absorbed all the
business rules, was in charge of the storage and retrieval
of the data from the two project databases.

The main purpose of the architecture was to
separate the financial transactions in the NoSQL database.
Thus, it was possible to apply fraud detection algorithms
with a very fast response time, increasing the search
efficiency and significantly reducing the likelihood of the
number of frauds.

B.	 Big Data and Hadoop
The term Big Data usually refers to large datasets

generated by companies and institutions, which often
have some common features as the 4 V’s: volume,
variety, velocity and veracity. The source of this data is
heterogeneous, for instance, sensors, supercomputers,

Figure 1 -

Figure 2 - Transaction Table

134 https://ojs.ifsp.edu.br/index.php/sinergia Sinergia, São Paulo, v. 20, n. 2, p. 132-137, abr./jun. 2019

NoSQL and Traditional Database Integration: Case Study Project BDIC-DM
Ramiro Tadeu Wisnieski

so that data is moved, for instance, from a storage into
the cluster processing nodes [7].

B.	 HDFS (Hadoop Distributed File System)
One of the most important components of the

solution is the distributed file system that provides high
fault tolerance through data replication among the
system nodes, enabling the growth of the capacity of the
system, in a transparent manner, and high performance
in the transmission of the data in the network. The HDFS
works with large blocks of data (64MB default) due to the
performance of Apache Hadoop to be superior when
access to the data takes place sequentially, in other
words, the number of “seek” operations are reduced.
Very large files are ideal for Hadoop as it looks for the
beginning of each block, keeping it sequentially from
that point. An important feature of HDFS is the topology
knowledge so the system assumes that the available
bandwidth is greater when the nodes are located in
the same rack, and the cost of access to such data
increases with the distance among the racks since the
network traffic must pass through several switches.
The system uses its topology awareness in order to
create a distribution policy that maximizes reliability and
performance while accessing the data. [8].

In the case of BDIC-DM project, the HDFS
provided an environment for storing and processing
the assimilated data from the relational and NoSQL
databases, providing significant gains in disk space and
fault tolerance.

C.	 MapReduce
Originated on the Google MapReduce programming

model, MapReduce was created for operations with
large amounts of data and became accessible to
a larger number of users, hiding its complexity of
developing parallel applications. The MapReduce is a
core component of Apache Hadoop and can be used
in a transparent manner through its eco-system tools
like Apache Pig and Hive. Although the team had no
specialists in implementing parallel algorithms or
knowledge in low level implementation of MapReduce,
it was possible to use this feature due to the choice of
using Hadoop.

D.	 Apache Hive
Although the MapReduce model facilitates the

creation of applications that benefit from parallel
computing environments, implementing this type
of software is complex for several users. In 2007
Facebook identified the need to bring familiar concepts
of databases MapReduce, increasing the range of
professionals who could benefit from the technology
in the company. The Apache Hive offers a language
similar to SQL called Hive Query Language (HQL) and
abstracts the process of implementing the MapReduce.
The Hive user writes a HQL query and submits it to the
cluster through the command line or web interface.
The application is responsible for creating and distributing
all the necessary jobs and returns the results on the
screen. The Apache Hive, however, is not a tool designed
for real-time analysis, it is designed for high-volume batch
analysis [9]. In BDIC-DM project Apache Hive was used

in the analysis of financial transactions imported from
Cassandra, avoiding the use of the main database for
historical analyzes.

V.	 Methodology
A.	 Moving data into Hadoop

Moving large volumes of data into HDFS can be
quite a challenge for some institutions due to limitations
in their corporate networks and storage systems.

In this case study, there was a necessity to transfer
data between a relational database (MySQL), a NoSQL
database (Cassandra) and the HDFS so that it became
possible to use the Hadoop Hive on the analysis of
the dataset.

To solve the task transfer between MySQL and
HDFS servers, Apache Sqoop was chosen as a tool for
transferring data between relational databases and
HDFS. Sqoop allows transfers to be executed in parallel
and enables the execution of MapReduce jobs directly
in the remote data. For example, this flexibility allows
queries to be submitted to the relational database,
filtering results at source, reducing network traffic and
storage requirements in HDFS [10].

In the case of Cassandra, it was not identified at
the time of testing a similar tool to Sqoop, so the native
Cassandra command COPY TO CSV was used through
a combination of Shell Script and CLASH (Cassandra
Language Shell). The data was then transferred to HDFS
with the use of Hadoop [11] put command.

In the first step of the data transfer to the HDFS, a
temporary area was used to create the same tables from
the database source.

B.	 Denormalisation Dataset
Although the normalization of databases is a

common and recommended practice in the case of
relational databases this can be a problem for large data
volumes. JOIN operations are very costly, so running
datasets in the order of Terabytes and Petabytes causes
a drop in the performance of queries on Apache Hive.
In these cases the denormalization, which consists of
basically gathering information scattered in multiple
tables in a larger table, becomes a good practice in
performance optimization [12]. One of the queries
we tested on the project involved sales statistics by
location. The modeling used in the MYSQL database
was normalized as the data model (Figure 1). After the
denormalization process of the four tables involving
locality, a single table was generated.

The normalization was performed using a query
on Apache Hive, which transferred the data stored in
text file format of the staging area to a new production
area. The file format for storing files in the production
area was the ORC (Optimized Row Columnar), one of
the latest advances of Apache Hive. The ORC format is
most effective when it is used to storage and access to
data, bringing several optimizations such as automatic
indexing and the ability to identify the type of data stored.
The format allows the use of data compression through
ZLIB and SNAPPY libraries [12]. The migration of the
text file format for ORC with SNAPPY provided a 70%
reduction in the use of disk space (Figure 3).

135sinergia@ifsp.edu.brSinergia, São Paulo, v. 20, n. 2, p. 132-137, abr./jun. 2019

NoSQL and Traditional Database Integration: Case Study Project BDIC-DM
Ramiro Tadeu Wisnieski

C.	 Accessing Dataset
After the transfer of the Dataset to our production

area , it was accessed through Apache Hive. In our
research it was found that the use of external tables
would be a better option. This technique indicates the
path of the files in HDFS in the table creation DDL in the
Hive. Thus, the system can access the data without the
need for INSERT operations. The great advantage of
external tables is the DDL independence in HIVE and
data if a table is deleted by mistake for instance, the data
remains intact. Figure 4 shows an example of the DDL
used to create an external table in Hive:

benefits to the performance of Hadoop, some important
best practices were identified that have significant impact
on query performance.

One of the techniques implemented in our
production server was the automatic table partitioning.
This technique indicates to the HIVE one or more fields
that the application should use to separate the data
into HDFS directories. The transaction table contains
the field data in “YYYY-MM-DD” format. The addition of
the option “PARTITIONED BY (YEAR, MONTH, DAY)” to
this DDL table, caused ​​at the time of migration from the
staging server HIVE, separated this table data into smaller
files, now divided into subdirectories YEAR, MONTH and
DAY (Figure 6). The great benefit of this technique for the
large datasets is to run a particular query to a particular
period or year, for example 2012, Hive will only access a
narrow set of data [13].

Figure 3 - Disk space occupied by Dataset

The HQL query in figure 5 retrieves the amount of
transactions divided by country and grouped by month
for the past 365 days based on the system date. For the
implementation of the project, nineteen queries were
created with the aim of classifying transaction volumes,
amount of sales in specific cities, holidays, and so forth.

D.	 Performance Improvement
During the execution of the first jobs in BDIC-DM

project, we noticed queries running for a very long time
although the standard recommendations from the
official documentation of the Apache Hive had been
into account. While migration file format brought many

Figure 4 - Example of a Hive DDL for an external table

Figure 5 - Data being accessed through HQL query

Figure 6 - Transaction table partitioning

	 E.	 Testing Architecture
The HQL language is quite similar to traditional

SQL, but it has some differences that caused some
issues early in the project, since the team was using
the language for the first time. As syntax errors and
some unexpected results began to appear, validations
of queries through unit tests became necessary before
they were submitted to the production environment.
Our team has implemented a test architecture based
on HiveRunner framework, which is based on JUnit, well
known in the java world [14].

Our model tests consisted of first use SQLite and
.NET language to create an oracle then to validate a
set of expected results through a set of synthetic data
generated by the Generate Data tool [15] [16] [17].
From the data, expected test cases were implemented

136 https://ojs.ifsp.edu.br/index.php/sinergia Sinergia, São Paulo, v. 20, n. 2, p. 132-137, abr./jun. 2019

NoSQL and Traditional Database Integration: Case Study Project BDIC-DM
Ramiro Tadeu Wisnieski

in HiveRunner then validating the queries used in
the project.

The decision to use software testing techniques
reduced the time that the team spent with refactoring
consultations with different operation more than was
expected, significantly increasing our productivity.
Figure 7 contains a diagram of the test architecture
described above.

VII.	 Conclusion
This article discusses the integration of technologies

in the generation, storage and processing of large
volumes of data, within a context of Interdisciplinary
Problem Based Learning (IPBL), in the graduate program
at the Brazilian Aeronautics Institute of Technology
(Instituto Tecnológico de Aeronáutica - ITA).

The results were obtained thanks to the
implementation of best development practice and to the

commitment of the students
that took part in the BDIC-DM
project, who spent a great
amount of technical effort to
make the execution of this
case study possible.

T h e p r o p o s e d
architecture at the beginning
of the project proved to
be capable of fulfilling its
assigned mission.

T h e B D I C - D M
project has provided a real
experience of development

and research of the topics discussed in this document,
in addition to starting several new implementations and
future studies, such as the incorporation of Apache
Spark [18], enabling the execution of MapReduce jobs
in memory.

It is possible to conclude that the integration of the
Hadoop ecosystem technology, NoSQL and relational
databases enables a wide range of implementations that
bring important values such as processing and storage
scalability, performance and flexibility.

VIII.	 Acknowledgment
The author of this paper would like to thank

the support and contribution of Brazilian Aeronautics
Institute of Technology (ITA)
for making the development
of BDIC-DM project possible.

References
[1] GARTNER OFFICIAL WEBSITE.
Gartner Says 4.9 Bil l ion
Connected “Things” Will Be in
Use in 2015, November 11, 2014.
Last access: 10/10/2015. Available
at: < http://www.gartner.com/
newsroom/id/2905717 >

[2] MARR, Bernard. Big Data:
The 5 Vs Everyone Must Know.
March 6, 2014. Last Access:
20/08/2015. Available at: < https://

www.linkedin.com/pulse/20140306073407-64875646-big-data-
the-5-vs-everyone-must-know >

[3] KORTH, H.F. e SILBERSCHATZ, A.; Sistemas de Bancos de
Dados, Makron Books, 2a. edição revisada, 1994

[4] DATASTAX ACADEMY OFFICIAL WEBSITE. NoSQL Databases
Defined and Explained. Last Access: 22/10/2015. Available at:
< http://www.planetcassandra.org/what-is-nosql/ >.

VI.	 Results
During the BDIC-DM project, it was possible to

apply the proposed architecture in figure 8 through a
generated data assimilation infrastructure based on
Apache Sqoop and features of Cassandra to export data
in csv format. It was also possible to centralize varied
data sources in a single environment that combines
storage power (HDFS) and processing (MapReduce). By
the OLTP and OLAP processing isolation, it was possible
to identify significant performance gains in the system,
since Cassandra was only used for online transactions.

Figure 7 - Test architecture of BDIC-DM project

Figure 8 - Database Integration Architecture of BDIC-DM project

The use of HDFS provided a 70% reduction of disk
space usage for storing data by using ORC format. Query
performance gains were observed on Apache Hive after
the dataset denormalization and employment of table
partitioning. In a larger dataset the gains would probably
be even more evident.

137sinergia@ifsp.edu.brSinergia, São Paulo, v. 20, n. 2, p. 132-137, abr./jun. 2019

NoSQL and Traditional Database Integration: Case Study Project BDIC-DM
Ramiro Tadeu Wisnieski

[5] MySQL OFFICIAL WEBSITE. MySQL Applier for Hadoop
(happlier). Last access: 07/08/2014. Available at: < http://dev.
mysql.com/tech-resources/articles/mysqlhadoop-applier.html >

[6] VENER, Jason. Pro Hadoop. New York. Apress. 2009

[7] BHOSALE, H. and GADEKAR, D.P. A Review Paper on Big
Data and Hadoop. Last Access: 29/10/2015. Available at:
< http://www.ijsrp.org/research-paper-1014/ijsrp-p34125.pdf >

[8] SHVACHKO, K. et all. The Hadoop Distributed File System.
Last Access: 22/10/2015. Available at: < http://zoo.cs.yale.edu/
classes/cs422/2014fa/readings/papers/shvachko10hdfs.pdf >

[9] THUSOO, Ashish. et all. – A Petabyte Scale Data Warehouse
Using Hadoop. Last Access: 22/09/2015. Available at: < http://
infolab.stanford.edu/~ragho/hive-icde2010.pdf >

[10] APACHE OFFICIAL WEBSITE. Apache Sqoop. Last Access:
25/10/2015. Available at: < http://sqoop.apache.org/ >

[11] APACHE OFFICIAL WEBSITE. Cassandra CQL. Last Access:
27/10/2015. Available at: < https://cassandra.apache.org/doc/
cql/CQL.html >

[12] HUAI, Yin et all. Major Technical Advancements in Apache
Hive - Access: 05/10/2015. Available at: < http://web.cse.ohio-
state.edu/hpcs/WWW/HTML/publications/papers/TR-14-2.pdf >

[13] BARKHA Jain; KAKHAN Manish Km.” Query Optimization
in Hive for Large Datasets” . Advances in Computer Science
and Information Technology (ACSIT), India, 2015.

[14] GITHUB OFFICIAL WEBSITE. HiveRunner: klarna.
Access: 05/10/2015. Available at: < https://github.com/klarna/
HiveRunner >

[15] SQLITE OFFICIAL WEBSITE. Access: 06/10/2015. Available
at: < https://www.sqlite.org/ >

[16] MICROSOFT OFFICIAL WEBSITE. Access: 07/10/2015.
Available at: < http://www.microsoft.com/net >

[17] GENERATE DATA OFFICIAL WEBSITE. Access: 01/10/2015.
Available at < http://www.generatedata.com >

[18] SPARK APACHE OFFICIAL WEBSITE. Access: 10/10/2015.
Available at: < http://spark.apache.org/ >

